If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2-42n+400=0
a = 1; b = -42; c = +400;
Δ = b2-4ac
Δ = -422-4·1·400
Δ = 164
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{164}=\sqrt{4*41}=\sqrt{4}*\sqrt{41}=2\sqrt{41}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-42)-2\sqrt{41}}{2*1}=\frac{42-2\sqrt{41}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-42)+2\sqrt{41}}{2*1}=\frac{42+2\sqrt{41}}{2} $
| n^2-21n+200=0 | | 8m+5=21(m=2) | | X+5x/100=200 | | 8000=x-0.4x | | 46x-98=7600 | | 9h+8=20 | | 2(y+3)-(y-1)=2 | | 3*x/2=5*x+8/6 | | 5y-3(2-y)=74 | | 16t^2-9t-171=0 | | |2(x–1)–15|=7 | | 770÷55×a=42 | | (21-4x)(21-4x)=0 | | (x+9)(x+9)+(x+7)(x+7)=34 | | 4x-14=12-9x | | (x+9)^2+(x+7)^2=34 | | 1/2x-4=3x+3 | | 4c-3=2c-5 | | (q)+(5)=(2q-3) | | 5x-9=2-6x | | (5x-9)=10x-18 | | (2-6x)=2-6x | | (2-6x)=14 | | 15v=54+6v | | 8y+3=03 | | 4y=12/2 | | 7(y-1)=28 | | 24=10^3x | | 2x-3=8x-17 | | 4-5a/6=11/2 | | 49+9x=17x+1 | | 20-7x=11+2x |